Structural basis of chaperone self-capping in P pilus biogenesis.

نویسندگان

  • D L Hung
  • J S Pinkner
  • S D Knight
  • S J Hultgren
چکیده

PapD is an immunoglobulin-like chaperone that mediates the assembly of P pili in uropathogenic strains of Escherichia coli. It binds and caps interactive surfaces on pilus subunits to prevent their premature associations in the periplasm. We elucidated the structural basis of a mechanism whereby PapD also interacts with itself, capping its own subunit binding surface. Crystal structures of dimeric forms of PapD revealed that this self-capping mechanism involves a rearrangement and ordering of the C2-D2 and F1-G1 loops upon dimerization which might ensure that a stable dimer is not formed in solution in spite of a relatively large dimer interface. An analysis of site directed mutations revealed that chaperone dimerization requires the same surface that is otherwise used to bind subunits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus.

The class of proteins collectively known as periplasmic immunoglobulin-like chaperones play an essential role in the assembly of a diverse set of adhesive organelles used by pathogenic strains of Gram-negative bacteria. Herein, we present a combination of genetic and structural data that sheds new light on chaperone-subunit and subunit-subunit interactions in the prototypical P pilus system, an...

متن کامل

Chaperone-assisted pilus assembly and bacterial attachment.

Bacterial pili assembled by the chaperone-usher pathway can mediate microbial attachment, an early step in the establishment of an infection, by binding specifically to sugars present in host tissues. Recent work has begun to reveal the structural basis both of chaperone function in the biogenesis of these pili and of bacterial attachment.

متن کامل

The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events.

Pilus biogenesis on the surface of uropathogenic Escherichia coli requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway, periplasmic chaperone-subunit complexes target an outer membrane (OM) usher for subunit assembly into pili and secretion to the cell surface. The molecular mechanisms of protein secretion across the OM are not well understoo...

متن کامل

Bacterial outer membrane ushers contain distinct targeting and assembly domains for pilus biogenesis.

Biogenesis of a superfamily of surface structures by gram-negative bacteria requires the chaperone/usher pathway, a terminal branch of the general secretory pathway. In this pathway a periplasmic chaperone works together with an outer membrane usher to direct substrate folding, assembly, and secretion to the cell surface. We analyzed the structure and function of the PapC usher required for P p...

متن کامل

Pilus biogenesis at the outer membrane of Gram-negative bacterial pathogens.

Pili belong to a broad class of bacterial surface structures that play a key role in infection and pathogenicity. The largest and best characterised pilus biogenesis system--the chaperone-usher pathway--is particularly remarkable in its ability to synthesise and display highly organised structures at the outer membrane without any input from endogenous energy sources. The past few years have he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 14  شماره 

صفحات  -

تاریخ انتشار 1999